Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Xi Sun,* Yi-Zhen Gao, Hong-Lin Zhang, De-Sheng Kong and You Yu

College of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.037$
$w R$ factor $=0.085$
Data-to-parameter ratio $=17.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[4-bromo-2-(2-pyridylmethyl-iminomethyl)phenolato]copper(II)]- μ-chloro]

In the title compound, $\left[\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}\right) \mathrm{Cl}\right]_{n}\right.$, the $\mathrm{Cu}^{\text {II }}$ atom has a slightly distorted square-pyramidal coordination. The Cu atom is coordinated in the basal plane by two N atoms and one O atom of the Schiff base ligand, and by a Cl atom. The Cl atom of a symmetry-related molecule bridges the Cu atoms, so forming a slightly distorted square-pyramidal configuration at the Cu atom.

Comment

Copper compounds are present in the active sites of several important classes of metalloproteins. Studies on copper compounds are of great interest in various aspects of chemistry (Downing \& Urbach, 1969; Ganeshpure et al., 1996; Bosnich, 1968; Costes et al., 1995). As an extension of work on the structural characterization of copper(II) complexes (Sun, 2005; Sun et al., 2005), a mononuclear copper(II) complex, (I), is reported here.

Complex (I) is an infinite polynuclear copper(II) coordination polymer, as shown in Fig. 1. Selected bond distances and angles are given in Table 1. The $\mathrm{Cu}^{\mathrm{II}}$ atom is four-coordinated by two N atoms and one O atom of the Schiff base ligand, and by two bridging Cl atoms, forming a slightly distorted squarepyramidal coordination configuration. The four coordinating atoms around the Cu centre in the basal plane are approximately coplanar, with an average deviation of 0.139(6) \AA; the Cu atom lies 0.136 (3) \AA above this plane. The $\mathrm{Cu} 1-\mathrm{N} 2$ bond [2.005 (3) \AA] is a little longer than the corresponding values [1.985 (3) and 1.977 (4) A] observed in two other copper(II) complexes (Sun, 2005; Sun et al., 2005). The Cu1-N1 bond length $[1.961(3) \AA$] is also a little longer than the values [1.939 (3) and1.934(4) A] observed in the same Schiff base complexes. The $\mathrm{Cu} 1-\mathrm{O} 1$ bond length $[1.896(2) \AA]$ is

Received 15 April 2005 Accepted 27 April 2005 Online 7 May 2005

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by the symmetry code ($1-x, y+\frac{1}{2},-z+\frac{5}{2}$).

Figure 2
The crystal packing of (I), viewed along the a axis.
comparable to the values [1.902 (2) and 1.889 (3) \AA] observed in the same complexes. The bond angles around the $\mathrm{Cu}^{\text {II }}$ centre show some deviations from ideal square-pyramidal geometry.

In the crystal structure, polymeric chains extend parallel to the a axis, as shown in Fig. 2.

Experimental

2-Aminomethylpyridine ($0.1 \mathrm{mmol}, 10.8 \mathrm{mg}$) and salicylaldehyde $(0.1 \mathrm{mmol}, 12.2 \mathrm{mg})$ were dissolved in methanol $(10 \mathrm{ml})$. The mixture was stirred for 1 h to obtain a clear yellow solution. To the solution
was added a methanol solution $(10 \mathrm{ml})$ of $\mathrm{CuCl}_{2}(0.1 \mathrm{mmol}, 13.6 \mathrm{mg})$, with stirring. After keeping the resulting solution in air for 7 d , blue block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}\right) \mathrm{Cl}\right]$
$M_{r}=389.13$
Orthorhombic, Pbca
$a=7.9131$ (5) \AA
$b=13.5720(8) \AA$
$c=25.0065(14) \AA$
$V=2685.6(3) \AA^{3}$
$Z=8$
$D_{x}=1.925 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.448, T_{\text {max }}=0.870$
28303 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.085$
$S=0.85$
3073 reflections
172 parameters

Mo $K \alpha$ radiation

Cell parameters from 4538
reflections
$\theta=3.0-21.6^{\circ}$
$\mu=4.79 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.20 \times 0.08 \times 0.03 \mathrm{~mm}$

3073 independent reflections
1828 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.106$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-17 \rightarrow 17$
$l=-31 \rightarrow 31$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0413 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.65 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.896(2)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.272(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.961(3)$	$\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$2.819(2)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.005(3)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$92.88(11)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	$94.59(9)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$175.46(12)$	$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$102.3(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$82.65(12)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$94.0(2)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$89.93(8)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$92.6(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$164.66(8)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$85.4(2)$

Symmetry code: (i) $1-x, y+\frac{1}{2}, \frac{5}{2}-z$.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank Qufu Normal University for funding this study.

References

Bruker (2002). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Bosnich, B. (1968). J. Am. Chem. Soc. 90, 627-632.
Costes, J. P., Dominiguez-Vera, J. M. \& Laurent, J. P. (1995). Polyhedron, 14, 2179-2187.
Downing, R. S. \& Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977-5983.

metal-organic papers

Ganeshpure, P. A., Tembe, G. L. \& Satish, S. (1996). J. Mol. Catal. A, 113, L423-L425.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sun, Y.-X. (2005). Acta Cryst. E61, m338-m340.
Sun, Y.-X., Gao, G.-Z., Pei, H.-X. \& Zhang, R. (2005). Acta Cryst. E61, m370m372.

